Feature-conjunctions in a Network of Spiking Neurons
نویسندگان
چکیده
The design of neural networks that are able to efficiently detect conjunctions of features is an important open challenge. We develop a feed-forward spiking neural network that requires a constant number of neurons for detecting a conjunction irrespective of the size of the retinal input field, and for up to four simultaneously present feature-conjunctions.
منابع مشابه
Modeling efficient conjunction detection with spiking neural networks
The design of neural networks that are able to efficiently encode and detect conjunctions of features is an important open challenge that is also referred to as “the binding-problem”. We define a formal framework for neural nodes that process activity in the form of tuples of spike-trains which can efficiently encode and detect feature-conjunctions on a retinal input field in a position-invaria...
متن کاملA Spiking Neural Network in sEMG Feature Extraction
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, t...
متن کاملInformation Processing Functionality of Spiking Neurons for Image Feature Extraction
Based on the information processing functionalities of spiking neurons, a spiking neural network model is proposed to extract features from a visual image. The network is constructed with a conductance-based integrate-and-fire neuron model and a set of specific receptive fields. The properties of the network are detailed in this paper. Simulation results show that the network is able to perform...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملBio-inspired Multi-layer Spiking Neural Network Extracts Discriminative Features from Speech Signals
Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking...
متن کامل